# NOT RUN {
# generate data
p <- 8
n <- 100
set.seed(333)
Y <- matrix(rnorm(n*p), nrow = n, ncol = p)
# define zero structure
S <- covML(Y)
S[1:3, 6:8] <- 0
S[6:8, 1:3] <- 0
zeros <- which(S==0, arr.ind=TRUE)
# obtain (triangulated) support info
supportP <- support4ridgeP(nNodes=p, zeros=zeros)
# determine optimal penalty parameter
# }
# NOT RUN {
optLambda <- optPenaltyPchordal(Y, 10^(-10), 10, 0.1, zeros=supportP$zeros,
cliques=supportP$cliques, separators=supportP$separators)
# }
# NOT RUN {
optLambda <- 0.1
# estimate precision matrix with known (triangulated) support
Phat <- ridgePchordal(S, optLambda, zeros=supportP$zeros,
cliques=supportP$cliques, separators=supportP$separators)
# }
Run the code above in your browser using DataLab