Calculates the moments of the sample covariance matrix. It assumes that the
summands (the outer products of the samples' random data vector) that
constitute the sample covariance matrix follow a Wishart-distribution with
scale parameter
momentS(Sigma, shape, moment = 1)
The
Positive-definite matrix
, the scale parameter
A numeric
, the shape parameter Sigma
).
An integer
. Should be in the set
Wessel N. van Wieringen.
Lesac, G., Massam, H. (2004), "All invariant moments of the Wishart distribution", Scandinavian Journal of Statistics, 31(2), 295-318.
# create scale parameter
Sigma <- matrix(c(1, 0.5, 0, 0.5, 1, 0, 0, 0, 1), byrow=TRUE, ncol=3)
# evaluate expectation of the square of a sample covariance matrix
# that is assumed to Wishart-distributed random variable with the
# above scale parameter Sigma and shape parameter equal to 40.
momentS(Sigma, 40, 2)
Run the code above in your browser using DataLab