Package contains proper L2-penalized ML estimators for the precision matrix as well as supporting functions to employ these estimators in a (integrative or meta-analytic) graphical modeling setting.
Carel F.W. Peeters, Anders Ellern Bilgrau, Wessel, N. van Wieringen
Maintainer: Carel F.W. Peeters <carel.peeters@wur.nl>
The main function of the package is ridgeP
which enables
archetypal and proper alternative ML ridge estimation of the precision
matrix. The alternative ridge estimators can be found in van Wieringen and
Peeters (2015) and encapsulate both target and non-target shrinkage for the
multivariate normal precision matrix. The estimators are analytic and enable
estimation in large \(p\) small \(n\) settings. Supporting functions to
employ these estimators in a graphical modeling setting are also given.
These supporting functions enable, a.o., the determination of the optimal
value of the penalty parameter, the determination of the support of a
shrunken precision estimate, as well as various visualization options.
The package has a modular setup. The core module (rags2ridges.R) contains the functionality stated above. The fused module (rags2ridgesFused.R) extends the functionality of the core module to the joint estimation of multiple precision matrices from (aggregated) high-dimensional data consisting of distinct classes. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. The fused module also contains supporting functions for integrative or meta-analytic Gaussian graphical modeling. The third module is the miscellaneous module (rags2RidgesMisc.R) which contains assorted hidden functions.
Function overview core module:
Function for (proper) ridge estimation of the precision matrix
ridgeP
Functions for penalty parameter selection
CNplot
optPenalty.aLOOCV
optPenalty.kCV
optPenalty.kCVauto
Functions for loss/entropy/fit evaluation
evaluateSfit
KLdiv
loss
Functions for block-independence testing
GGMblockNullPenalty
GGMblockTest
Function for support determination
sparsify
Functions for (network) visualization
edgeHeat
ridgePathS
Ugraph
Functions for topology statistics
GGMmutualInfo
GGMnetworkStats
GGMpathStats
Wrapper function
fullMontyS
Support functions
adjacentMat
covML
covMLknown
default.target
evaluateS
pcor
symm
Function overview fused module:
Function for targeted fused ridge estimation of multiple precision matrices
ridgeP.fused
Function for fused penalty parameter selection
optPenalty.fused
Functions for loss/entropy/fit evaluation
KLdiv.fused
NLL
Function for testing the necessity of fusion
fused.test
Function for support determination
sparsify.fused
Functions for topology statistics
GGMnetworkStats.fused
GGMpathStats.fused
Support functions
createS
default.penalty
default.target.fused
getKEGGPathway
isSymmetricPD
is.Xlist
kegg.target
plot.ptest
pooledS
print.optPenaltyFusedGrid
print.ptest
rmvnormal
Calls of interest to miscellaneous module:
rags2ridges:::.TwoCents()
~~(Unsolicited advice)
rags2ridges:::.Brooke()
~~(Endorsement)
rags2ridges:::.JayZScore()
~~(The truth)
rags2ridges:::.theHoff()
~~(Wish)
rags2ridges:::.rags2logo()
~~(Warm welcome)
Peeters, C.F.W., Bilgrau, A.E., and van Wieringen, W.N. (2022). rags2ridges: A One-Stop-l2-Shop for Graphical Modeling of High-Dimensional Precision Matrices. Journal of Statistical Software, vol. 102(4): 1-32.
Bilgrau, A.E., Peeters, C.F.W., Eriksen, P.S., Boegsted, M., and van Wieringen, W.N. (2020). Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes. Journal of Machine Learning Research, 21(26): 1-52. Also available as arXiv:1509.07982v2 [stat.ME].
Peeters, C.F.W., van de Wiel, M.A., & van Wieringen, W.N. (2020). The Spectral Condition Number Plot for Regularization Parameter Evaluation. Computational Statistics, 35: 629-646. Also available as arXiv:1608.04123 [stat.CO].
van Wieringen, W.N. & Peeters, C.F.W. (2016). Ridge Estimation of Inverse Covariance Matrices from High-Dimensional Data. Computational Statistics & Data Analysis, vol. 103: 284-303. Also available as arXiv:1403.0904v3 [stat.ME].
van Wieringen, W.N. & Peeters, C.F.W. (2015). Application of a New Ridge Estimator of the Inverse Covariance Matrix to the Reconstruction of Gene-Gene Interaction Networks. In: di Serio, C., Lio, P., Nonis, A., and Tagliaferri, R. (Eds.) `Computational Intelligence Methods for Bioinformatics and Biostatistics'. Lecture Notes in Computer Science, vol. 8623. Springer, pp. 170-179.