# NOT RUN {
# set dimensions (p=covariates, n=individuals, T=time points)
p <- 3; n <- 4; T <- 10
# set model parameters
SigmaE <- diag(p)/4
Ax <- createA(3, "chain")
# generate time-varying covariate data
X <- dataVAR1(n, T, Ax, SigmaE)
# (auto)regression parameter matrices of VARX(1) model
A <- createA(p, topology="clique", nonzeroA=0.1, nClique=1)
B <- createA(p, topology="hub", nonzeroA=0.1, nHubs=1)
# generate data
Y <- dataVARX1(X, A, B, SigmaE, lagX=0)
# determine the optimal penalty parameter
optLambda <- optPenaltyVARX1(Y, X, rep(10^(-10), 3), rep(1000, 3),
optimizer="nlm", lagX=0)
# fit VAR(1) model
ridgeVARX1(Y, X, optLambda[1], optLambda[2], optLambda[3], lagX=0)$A
# }
Run the code above in your browser using DataLab