foutliers(data, method = c("robMah", "lrt", "depth.trim", "depth.pond",
"HUoutliers"), dfunc = depth.mode, nb = 200, suav = 0.05, trim = 0.1,
order = 2, lambda = 3.29,...)
fds
or fts
.method="lrt"
or method="depth.trim"
or method="depth.pond"
,
users can specify the type of depth functions with possible choices of depth.FM, depth.mode, depth.RP, depth.RPD.method="lrt"
, users can specify the number of bootstrap samples.method="lrt"
, users can specify the smoothing parameter used in the smoothed bootstrap samples to determine the cutoff value.method="lrt"
or method="depth.trim"
or method="depth.pond"
,
users can specify the trimming percentage.method="HUoutliers"
, users can specify the number of principal components.method="HUoutliers"
, users can specify the value of tuning parameter.method="lrt"
, method="depth.trim"
, and method="depth.pond"
.method="lrt"
, the outlier detection method corresponds to the approach of Febrero et al. (2007) using the likelihood ratio test.
When method="depth.trim"
, the outlier detection method corresponds to the approach of Febrero et al. (2008) using the functional depth with trimmed curves.
When method="depth.pond"
, the outlier detection method corresponds to the approach of Febrero et al. (2008) using the functional depth with all curves.
When method="HUoutliers"
, the outlier detection method corresponds to the approach of Hyndman and Ullah (2008) using the integrated square forecast errors.
When method="robMah"
, the outlier detection method corresponds to the approach of Rousseeuw and Leroy (1987) using the robust Mahalanobis distance.foutliers(data = ElNino, method = "lrt")
foutliers(data = ElNino, method = "depth.trim")
foutliers(data = ElNino, method = "depth.pond")
foutliers(data = ElNino, method = "HUoutliers")
foutliers(data = ElNino, method = "robMah")
Run the code above in your browser using DataLab