Original monthly sea surface temperatures have been restricted from January 1950 to December 2006.
The monthly sea surface temperatures can be smoothed using smoothing spline with the smoothing parameter determined by generalized cross validation.
data(ElNino)
data(ElNinosmooth)
An object of class sfts
.
These averaged monthly sea surface temperatures are measured by the different moored buoys in the "Nino region" defined by the coordinates 0-10 degree South and 90-80 degree West.
A. Antoniadis and T. Sapatinas (2003) "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes", Journal of Multivariate Analysis, 87(1), 133-158.
P. C. Besse, H. Cardot and D. B. Stephenson (2000) "Autoregressive forecasting of some functional climatic variations", Scandinavian Journal of Statistics, 27(4), 673-687.
F. Ferraty, A. Rabhi and P. Vieu (2005) "Conditional quantiles for dependent functional data with application to the climate EL Nino Phenomenon", Sankhya: The Indian Journal of Statistics, 67(2), 378-398.
F. Ferraty and P. Vieu (2007) Nonparametric functional data analysis, New York: Springer.
R. J. Hyndman and H. L. Shang (2010) "Rainbow plots, bagplots, and boxplots for functional data", Journal of Computational and Graphical Statistics, 19(1), 29-45.
E. Moran, R. Adams, B. Bakoyema, S. Fiorini and B. Boucek (2006) "Human strategies for coping with El Nino related drought in Amazonia", Climatic Change, 77(3-4), 343-361.
A. Timmermann, J. Oberhuber, A. Bacher, M. Esch, M. Latif and E. Roeckner (1999) "Increased El Nino frequency in a climate model forced by future greenhouse warming", Nature, 398(6729), 694-697.
# NOT RUN {
plot(ElNino)
plot(ElNinosmooth)
# }
Run the code above in your browser using DataLab