est.shift(sample1,sample2,B=1000,min.iter=0,batch=10,mcmc.obj=NULL,dye.swap=FALSE,nb.col1=NULL,all.out=TRUE,verbose=FALSE)min.iter should be less than
B.batch-th iteration will be stored.mcmc.shift, as returned by
est.shift.
If no mcmc.obj, the MCMC is initialized to the least squares estimates.all.out is FALSE, only the posterior
mean is outputted. This could be used to save memory. mcmc.est containing the sampled values from the posterior distribution.
mu, the baseline intensity.alpha2, the sample effect.beta2,
the dye effect.delta_22, the dye*sample interaction.rhofit.model
data(hiv)
### Initialize the proposals
mcmc.hiv<-est.shift(hiv[1:10,c(1:4)],hiv[1:10,c(5:8)],B=2000,min.iter=000,batch=1,mcmc.obj=NULL,dye.swap=TRUE,nb.col1=2)
Run the code above in your browser using DataLab