Uses randomised linear algebra, see Halko et al. (2010). Singular value decomposition (SVD) decomposes a matrix \(X=U\Sigma W^T\)
randSVD(L, rank, depth, numVectors, cent = FALSE)
A list of three: u
(=U), d
(=Sigma), and v
(=W^T)
a pedigree's L inverse matrix in sparse 'spam' format
An integer
, how many principal components to return
integer
, the number of iterations for generating the range matrix
An integer > rank
to specify the oversampling for the
logical
, whether or not to (implicitly) centre the additive
relationship matrix