Learn R Programming

randPedPCA (version 1.1.2)

randSVD: Singular value decomposition in sparse triangular matrix

Description

Uses randomised linear algebra, see Halko et al. (2010). Singular value decomposition (SVD) decomposes a matrix \(X=U\Sigma W^T\)

Usage

randSVD(L, rank, depth, numVectors, cent = FALSE)

Value

A list of three: u (=U), d (=Sigma), and v (=W^T)

Arguments

L

a pedigree's L inverse matrix in sparse 'spam' format

rank

An integer, how many principal components to return

depth

integer, the number of iterations for generating the range matrix

numVectors

An integer > rank to specify the oversampling for the

cent

logical, whether or not to (implicitly) centre the additive relationship matrix