## Not run:
# ## ------------------------------------------------------------
# ## example of survival imputation
# ## ------------------------------------------------------------
#
# #imputation using outcome splitting
# data(pbc, package = "randomForestSRC")
# pbc.d <- impute.rfsrc(Surv(days, status) ~ ., data = pbc, nsplit = 3)
#
# #when no formula is given we default to unsupervised splitting
# pbc2.d <- impute.rfsrc(data = pbc, nodesize = 1, nsplit = 10, nimpute = 5)
#
# #random splitting can be reasonably good
# pbc3.d <- impute.rfsrc(Surv(days, status) ~ ., data = pbc,
# splitrule = "random", nodesize = 1, nimpute = 5)
#
# ## ------------------------------------------------------------
# ## example of regression imputation
# ## ------------------------------------------------------------
#
# air.d <- impute.rfsrc(Ozone ~ ., data = airquality, nimpute = 5)
# air2.d <- impute.rfsrc(data = airquality, nimpute = 5, nodesize = 1)
# air3.d <- impute.rfsrc(Ozone ~ ., data = airquality, nimpute = 5,
# splitrule = "random", nodesize = 1)
#
# ## ------------------------------------------------------------
# ## multivariate missForest imputation
# ## ------------------------------------------------------------
#
# data(pbc, package = "randomForestSRC")
#
# ## use 10 percent of variables as responses
# ## i.e. multivariate missForest
# pbc.d <- impute.rfsrc(data = pbc, mf.q = .01, nodesize = 1)
#
# ## use 1 variable as the response
# ## i.e. original missForest algorithm
# pbc.d <- impute.rfsrc(data = pbc, mf.q = 1, nodesize = 1)
# ## End(Not run)
Run the code above in your browser using DataLab