## Not run:
# ## ------------------------------------------------------------
# ## classification example
# ## showcase different vimp
# ## ------------------------------------------------------------
#
# iris.obj <- rfsrc(Species ~ ., data = iris)
#
# # Breiman-Cutler permutation vimp
# print(vimp(iris.obj)$importance)
#
# # Breiman-Cutler random daughter vimp
# print(vimp(iris.obj, importance = "random")$importance)
#
# # Breiman-Cutler joint permutation vimp
# print(vimp(iris.obj, joint = TRUE)$importance)
#
# # Breiman-Cuter paired vimp
# print(vimp(iris.obj, c("Petal.Length", "Petal.Width"), joint = TRUE)$importance)
# print(vimp(iris.obj, c("Sepal.Length", "Petal.Width"), joint = TRUE)$importance)
#
#
# ## ------------------------------------------------------------
# ## regression example
# ## compare Breiman-Cutler vimp to ensemble based vimp
# ## ------------------------------------------------------------
#
# airq.obj <- rfsrc(Ozone ~ ., airquality)
# vimp.all <- cbind(
# ensemble = vimp(airq.obj, importance = "permute.ensemble")$importance,
# breimanCutler = vimp(airq.obj, importance = "permute")$importance)
# print(vimp.all)
#
#
# ## ------------------------------------------------------------
# ## regression example
# ## calculate VIMP on test data
# ## ------------------------------------------------------------
#
# set.seed(100080)
# train <- sample(1:nrow(airquality), size = 80)
# airq.obj <- rfsrc(Ozone~., airquality[train, ])
#
# #training data vimp
# print(airq.obj$importance)
# print(vimp(airq.obj)$importance)
#
# #test data vimp
# print(vimp(airq.obj, newdata = airquality[-train, ])$importance)
#
# ## ------------------------------------------------------------
# ## survival example
# ## study how vimp depends on tree imputation
# ## makes use of the subset option
# ## ------------------------------------------------------------
#
# data(pbc, package = "randomForestSRC")
#
# # determine which records have missing values
# which.na <- apply(pbc, 1, function(x){any(is.na(x))})
#
# # impute the data using na.action = "na.impute"
# pbc.obj <- rfsrc(Surv(days,status) ~ ., pbc, nsplit = 3,
# na.action = "na.impute", nimpute = 1)
#
# # compare vimp based on records with no missing values
# # to those that have missing values
# # note the option na.action="na.impute" in the vimp() call
# vimp.not.na <- vimp(pbc.obj, subset = !which.na, na.action = "na.impute")$importance
# vimp.na <- vimp(pbc.obj, subset = which.na, na.action = "na.impute")$importance
# print(data.frame(vimp.not.na, vimp.na))
# ## End(Not run)
Run the code above in your browser using DataLab