# \donttest{
## ------------------------------------------------------------
## example of survival imputation
## ------------------------------------------------------------
## default everything - unsupervised splitting
data(pbc, package = "randomForestSRC")
pbc1.d <- impute(data = pbc)
## imputation using outcome splitting
f <- as.formula(Surv(days, status) ~ .)
pbc2.d <- impute(f, data = pbc, nsplit = 3)
## random splitting can be reasonably good
pbc3.d <- impute(f, data = pbc, splitrule = "random", nimpute = 5)
## optional final sweep (standard imputation)
pbc3.fs <- impute(f, data = pbc, splitrule = "random", nimpute = 5,
full.sweep = TRUE)
## ------------------------------------------------------------
## example of regression imputation
## ------------------------------------------------------------
air1.d <- impute(data = airquality, nimpute = 5)
air2.d <- impute(Ozone ~ ., data = airquality, nimpute = 5)
air3.d <- impute(Ozone ~ ., data = airquality, fast = TRUE)
## final sweep with custom options (e.g., larger forest)
air3.fs <- impute(Ozone ~ ., data = airquality, nimpute = 5,
full.sweep = TRUE,
full.sweep.options = list(ntree = 1000, nodesize = 5, nsplit = 0,
mtry = 3, splitrule = "random"))
## ------------------------------------------------------------
## multivariate missForest imputation
## ------------------------------------------------------------
data(pbc, package = "randomForestSRC")
## missForest algorithm - uses 1 variable at a time for the response
pbc.d <- impute(data = pbc, mf.q = 1)
## multivariate missForest - use 10 percent of variables as responses
pbc.mv <- impute(data = pbc, mf.q = .10)
## missForest but faster by using random splitting
pbc.fast <- impute(data = pbc, mf.q = 1, splitrule = "random")
## missForest + final sweep
pbc.fast.fs <- impute(data = pbc, mf.q = 1, splitrule = "random",
full.sweep = TRUE)
# }
Run the code above in your browser using DataLab