# NOT RUN {
## not run
## Classification : synthetic data
# set.seed(2014)
# n = 1000
# p = 100
# X = simulationData(n, p)
# X = fillVariablesNames(X)
# epsilon1 = runif(n,-1,1)
# epsilon2 = runif(n,-1,1)
# rule = 2*(X[,1]*X[,2] + X[,3]*X[,4]) + epsilon1*X[,5] + epsilon2*X[,6]
# Y = as.factor(ifelse(rule > mean(rule), "+","-"))
# training and test sets
# train_test = init_values(X, Y, sample.size = 1/2)
# X1 = train_test$xtrain
# Y1 = train_test$ytrain
# X2 = train_test$xtest
# Y2 = train_test$ytest
# train model
# synth.ruf = randomUniformForest(X1, as.factor(Y1))
# evaluates OOB predictions
# statsOOB.pred.synth.ruf = model.stats(synth.ruf, as.factor(Y1), OOB = TRUE)
# predict
# pred.synth.ruf = predict(synth.ruf, X2)
# statistics : produces also two plots
# stats.pred.synth.ruf = model.stats(pred.synth.ruf, as.factor(Y2))
# or, trick, do all in two lines
# synth.ruf = randomUniformForest(X1, as.factor(Y1), xtest = X2, ytest = as.factor(Y2))
# stats.pred.synth.ruf = model.stats(synth.ruf, as.factor(Y2))
## regression : synthetic data
# Y = rule
# Y1 = Y[train_test$train_idx]
# Y2 = Y[train_test$test_idx]
# synth.ruf = randomUniformForest(X1, Y1)
# statsOOB.pred.synth.ruf = model.stats(synth.ruf, Y1, OOB = TRUE, regression = TRUE)
# pred.synth.ruf = predict(synth.ruf, X2)
# stats.pred.synth.ruf = model.stats(pred.synth.ruf, Y2, regression = TRUE)
# }
Run the code above in your browser using DataLab