# NOT RUN {
## not run
## NOTE : please remove comments to run
#### Classification: "car evaluation" data (http://archive.ics.uci.edu/ml/datasets/Car+Evaluation)
# data(carEvaluation)
# car.data = carEvaluation
# n <- nrow(car.data)
# p <- ncol(car.data)
# trainTestIdx <- cut(sample(1:n, n), 2, labels= FALSE)
## train examples
# car.data.train <- car.data[trainTestIdx == 1, -p]
# car.class.train <- as.factor(car.data[trainTestIdx == 1, p])
## test data
# car.data.test <- car.data[trainTestIdx == 2, -p]
# car.class.test <- as.factor(car.data[trainTestIdx == 2, p])
## compute model : train and predict in the same function
# car.ruf <- randomUniformForest(car.data.train, car.class.train, xtest = car.data.test)
# car.ruf
## compute importance object deeper (increasing level of interactions) on test data
# car.ruf.importance <- importance(car.ruf, Xtest = car.data.test,
# maxinteractions = 6, threads = 2)
## get partial importance for the three most important features
## in test set for "unacceptable" cars
# car.ruf.partialImportance.unacc <- partialImportance(car.data.test,
# car.ruf.importance, whichClass = "unacc")
## get partial importance for the three most important features in test set for "acceptable" cars
# car.ruf.partialImportance.acc <- partialImportance(car.data.test, car.ruf.importance,
# whichClass = "acc")
#### Regression : "Concrete Compressive Strength" data
## (http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength)
# data(ConcreteCompressiveStrength.data)
# ConcreteCompressiveStrength.data = ConcreteCompressiveStrength
# n <- nrow(ConcreteCompressiveStrength.data)
# p <- ncol(ConcreteCompressiveStrength.data)
# trainTestIdx <- cut(sample(1:n, n), 2, labels= FALSE)
## train examples
# concrete.data.train <- ConcreteCompressiveStrength.data[trainTestIdx == 1, -p]
# concrete.responses.train <- ConcreteCompressiveStrength.data[trainTestIdx == 1, p]
## test data
# concrete.data.test <- ConcreteCompressiveStrength.data[trainTestIdx == 2, -p]
# concrete.responses.test <- ConcreteCompressiveStrength.data[trainTestIdx == 2, p]
## model
# concrete.ruf <- randomUniformForest(concrete.data.train, concrete.responses.train,
# featureselectionrule = "L1")
# concrete.ruf
## importance on train data
# concrete.ruf.importance <- importance.randomUniformForest(concrete.ruf,
# Xtest = concrete.data.train, maxInteractions = 8, threads = 2)
## partial importance for concrete compressive strength higher than 40.
# concrete.ruf.partialImportance <- partialImportance(concrete.data.train,
# concrete.ruf.importance, threshold = 40, thresholdDirection = "high")
## partial importance for concrete compressive strength lower than 30.
# concrete.ruf.partialImportance <- partialImportance(concrete.data.train,
# concrete.ruf.importance, threshold = 30, thresholdDirection = "low")
# }
Run the code above in your browser using DataLab