data(foodAAT)
# Reliability of the double difference score:
# [RT(push food)-RT(pull food)] - [RT(push object)-RT(pull object)]
frel<-rapidsplit(data=foodAAT,
subjvar="subjectid",
diffvars=c("is_pull","is_target"),
stratvars="stimid",
aggvar="RT",
splits=100)
print(frel)
plot(frel,type="average")
# Compute a single random split-half reliability of the error rate
rapidsplit(data=foodAAT,
subjvar="subjectid",
aggvar="error",
splits=1,
aggfunc="means")
# Compute the reliability of an IAT D-score
data(raceIAT)
rapidsplit(data=raceIAT,
subjvar="session_id",
diffvars="congruent",
subscorevar="blocktype",
aggvar="latency",
errorhandling=list(type="fixedpenalty",errorvar="error",
fixedpenalty=600,blockvar="block_number"),
splits=10,
standardize=TRUE)
# Compute the reliability of mean RT
# in subsets of 200 splits and 100 participants per run
rapidsplit.chunks(data=foodAAT,
subjvar="subjectid",
aggvar="RT",
splits=400,
split.chunksize=200,
sample.chunksize=50)
Run the code above in your browser using DataLab