Learn R Programming

raptr (version 0.0.1)

update: Update object

Description

This function updates parameters or data stored in an existing GurobiOpts, RapUnreliableOpts, RapReliableOpts, RapData, RapUnsolved, or RapSolved object.

Usage

"update"(object, Threads = NULL, MIPGap = NULL, Method = NULL, Presolve = NULL, TimeLimit = NULL, NumberSolutions = NULL, MultipleSolutionsMethod = NULL, ...)
"update"(object, NumberSolutions = NULL, ...)
"update"(object, species = NULL, space = NULL, name = NULL, amount.target = NULL, space.target = NULL, pu = NULL, cost = NULL, status = NULL, ...)
"update"(object, BLM = NULL, failure.multiplier = NULL, max.r.level = NULL, ...)
"update"(object, BLM = NULL, ...)
"update"(object, ..., formulation = NULL, solve = TRUE)

Arguments

object
GurobiOpts, RapUnreliableOpts, RapReliableOpts, RapData, RapUnsolved, or RapSolved object.
Threads
integer number of cores to use for processing.
MIPGap
numeric MIP gap specifying minimum solution quality.
Method
integer Algorithm to use for solving model.
Presolve
integer code for level of computation in presolve.
TimeLimit
integer number of seconds to allow for solving.
NumberSolutions
integer number of solutions to generate.
MultipleSolutionsMethod
character name of method to obtain multiple solutions NumberSolutions > 1. Available options are 'benders.cuts' and 'solution.pool'. Defaults to 'benders.cuts'. Note that the rgurobi package must be to use the 'solution.pool' method.
...
parameters passed to update.RapReliableOpts, update.RapUnreliableOpts, or update.RapData.
species
integer or character denoting species for which targets or name should be updated.
space
integer denoting space for which targets should be updated.
name
character to rename species.
amount.target
numeric vector for new area targets (%) for the specified species.
space.target
numeric vector for new attribute space targets (%) for the specified species and attribute spaces.
pu
integer planning unit indices that need to be updated.
cost
numeric new costs for specified planning units.
status
integer new statuses for specified planning units.
BLM
numeric boundary length modifier.
failure.multiplier
numeric multiplier for failure planning unit.
max.r.level
numeric maximum R failure level for approximation.
formulation
character indicating new problem formulation to use. This can be either 'unreliable' or 'reliable'. The default is NULL so that formulation in object is used.
solve
logical should the problem be solved? This argument is only valid for RapUnsolved and RapSolved objects. Defaults to TRUE.

Value

GurobiOpts-class, RapUnreliableOpts-class, RapReliableOpts-class, RapData-class, RapUnsolved-class, or RapSolved-class object depending on x.

See Also

GurobiOpts-class, RapUnreliableOpts-class, RapReliableOpts-class, RapData-class, RapUnsolved-class, RapSolved-class.

Examples

Run this code
# load data
data(sim_ru, sim_rs)

# GurobiOpts
x <- GurobiOpts(MIPGap=0.7)
y <- update(x, MIPGap=0.1)
print(x)
print(y)

# RapUnreliableOpts
x <- RapUnreliableOpts(BLM=10)
y <- update(x, BLM=2)
print(x)
print(y)

# RapReliableOpts
x <- RapReliableOpts(failure.multiplier=2)
y <- update(x, failure.multiplier=4)
print(x)
print(y)

# RapData
x <- sim_ru@data
y <- update(x, space.target=c(0.4, 0.7, 0.1))
print(space.target(x))
print(space.target(y))

## RapUnsolved
x <- sim_ru
y <- update(x, amount.target=c(0.1, 0.2, 0.3), BLM=3, solve=FALSE)
# print x parameters
print(x@opts@BLM); print(amount.target(x))
# print y parameters
print(y@opts@BLM); print(space.target(y))

## RapSolved
x <- sim_rs
y <- update(x, space.target=c(0.4, 0.6, 0.9), BLM=100, Presolve=1L, solve=FALSE)
# print x parameters
print(x@opts@BLM); print(amount.target(x))
# print y parameters
print(y@opts@BLM); print(space.target(y))

Run the code above in your browser using DataLab