# NOT RUN {
# load data
data(cs_pus, cs_spp, cs_space)
# create data for RapData object
attribute.spaces <- list(
AttributeSpaces(
list(
AttributeSpace(
planning.unit.points=PlanningUnitPoints(
rgeos::gCentroid(cs_pus[1:10,], byid=TRUE)@coords,
seq_len(10)
)
demand.points=make.DemandPoints(
SpatialPoints(
coords=randomPoints(
cs_spp,
n=10,
prob=TRUE
)
),
),
species=1L
),
AttributeSpace(
planning.unit.points=PlanningUnitPoints(
extract(cs_space[[1]],cs_pus[1:10,],fun=mean),
seq_len(10)
),
demand.points=make.DemandPoints(
SpatialPoints(
coords=randomPoints(
cs_spp,
n=10,
prob=TRUE
)
),
cs_space[[1]]
),
species=1L
)
)
)
)
pu.species.probabilities <- calcSpeciesAverageInPus(cs_pus[1:10,], cs_spp)
polygons <- SpatialPolygons2PolySet(cs_pus[1:10,])
boundary <- calcBoundaryData(cs_pus[1:10,])
x<-RapData(
pu=cs_pus@data[1:10,],
species=data.frame(name='test'),
target=data.frame(species=1, target=0:2, proportion=0.2),
pu.species.probabilities=pu.species.probabilities,
attribute.spaces=attribute.spaces,
polygons=polygons,
boundary=boundary
)
print(x)
# }
Run the code above in your browser using DataLab