# Load data from external folder
object <- readRasterFolder(path = "mypath", samplename = "mysample",
filenames = c('myvar1.asc', 'myvar2.asc'))
# For this example, get data from a random data frame
mysample <- sample(c(NA, 1, 2, 3), 20000, rep = TRUE)
red <- sample(c(NA,1:255), 20000, rep = TRUE)
green <- sample(c(NA,1:255), 20000, rep = TRUE)
blue <- sample(c(NA,1:255), 20000, rep = TRUE)
newdata <- data.frame(mysample,red,green,blue)
# Prepare object using the dataframe and specifying raster properties
object <- new('rasclass')
object <- setRasclassData(newdata, object, ncols = 100, nrows = 200,
xllcorner = 0, yllcorner = 0, cellsize = 10, NAvalue = -9999,
samplename = 'mysample')
# Classify and compute accuracy
object <- classifyMlogit(object, anova = TRUE)
object <- accuracyAssessment(object)
# Summarize and plot results
summary(object)
image(object@predictedGrid)
Run the code above in your browser using DataLab