# Here the application in the paper of Quintero et al.,
# on the Psophia trumpeters
# is shown using rase package.
#load data
data(rase_data, package = 'rase')
# check the data we are going to use
# the phylogenetic tree
psophia_tree
# the GPC polygons of Psophia distribution.
psophia_poly
# Species names of polygons (in order)
pnames <- c('dextralis', 'viridis', 'leucoptera', 'interjecta',
'obscura', 'crepitans', 'ochroptera', 'napensis')
# name the polygons
psophia_poly <- name.poly(psophia_poly, psophia_tree,
poly.names = pnames)
# Run rase for 10 iterations
rase_results <- rase(psophia_tree, psophia_poly, niter = 100)
# Run with higher number of iterations
# rase_results <- rase(psophia_tree, polygons)
# Check the results
str(rase_results)
# post-MCMC handling
rase_results_for_ggmcmc <- post.mcmc(rase_results, burnin=0, thin = 1)
#plot the densities for dispersal rates using ggmcmc
require(ggmcmc)
ggs_traceplot(rase_results_for_ggmcmc, family = 'sigma')Run the code above in your browser using DataLab