Learn R Programming

rase (version 0.2-22)

rase-package: Range Ancestral State Estimation

Description

The rase package primarily implements the Range Ancestral State Estimation for phylogeography described in Quintero, I., Keil, P., Jetz, W., Crawford, F. W. 2015 Historical Biogeography Using Species Geographical Ranges. Systematic Biology. doi: 10.1093/sysbio/syv057. It also includes Bayesian inference of ancestral states under a Brownian Motion model of character evolution and Maximum Likelihood estimation of rase for n-dimensional data. Visualizing functions in 3D are implemented using the rgl package.

Arguments

Details

Package:
rase
Type:
Package
Version:
0.2-2
Date:
2015-08-12
License:
GLP (>=2)

References

Quintero, I., Keil, P., Jetz, W., Crawford, F. W. 2015 Historical Biogeography Using Species Geographical Ranges. Systematic Biology.doi: 10.1093/sysbio/syv057

Examples

Run this code
# Here the application in the paper of Quintero et al.,
# on the Psophia trumpeters 
# is shown using rase package.
	
#load data
data(rase_data, package = 'rase')  
	
## Not run: 
# # check the data we are going to use
# # the phylogenetic tree
# psophia_tree
# 	
# # the GPC polygons of Psophia distribution.
# psophia_poly
# 
# # Species names of polygons (in order)
# pnames <- c('dextralis', 'viridis', 'leucoptera', 'interjecta', 
#   'obscura', 'crepitans', 'ochroptera', 'napensis')
# 
# # name the polygons
# psophia_poly <- name.poly(psophia_poly, psophia_tree, 
#   poly.names = pnames)
# 
# # Run rase for 10 iterations
# rase_results <- rase(psophia_tree, psophia_poly, niter = 100)
# # Run with higher number of iterations
# # rase_results <- rase(psophia_tree, polygons)
# 
# # Check the results
# str(rase_results)
# 
# # post-MCMC handling
# rase_results_for_ggmcmc <- post.mcmc(rase_results, burnin=0, thin = 1)
# 	
# #plot the densities for dispersal rates using ggmcmc
# require(ggmcmc)
# ggs_traceplot(rase_results_for_ggmcmc, family = 'sigma')
# ## End(Not run)

Run the code above in your browser using DataLab