# Sample size for `"2-side"` test
two_mean_size(muA = 5, muB = 10, kappa = 1, sd = 10,
alpha = 0.05, beta = 0.2, test_type = "2-side")
# Power of `"2-side"` test
two_mean_size(muA = 5, muB = 10, kappa = 1, sd = 10,
alpha = 0.05, nB = 63, test_type = "2-side")
# Sample size for `"1-side"` test
two_mean_size(muA = 132.86, muB = 127.44, kappa = 2, sdA = 15.34, sdB = 18.23,
alpha = 0.05, beta = 0.2, test_type = "1-side")
# Power of `"1-sided"` test
two_mean_size(muA = 132.86, muB = 127.44, kappa = 2, sdA = 15.34, sdB = 18.23,
alpha = 0.05, nA = 85, test_type = "1-side")
# Sample size for `"non-inferiority"` test
two_mean_size(muA = 5, muB = 5, delta = 5, kappa = 1, sd = 10,
alpha = 0.05, beta = 0.2, test_type = "non-inferiority")
# Power of `"non-inferiority"` test
two_mean_size(muA = 5, muB = 5, delta = 5, kappa = 1, sd = 10,
alpha = 0.05, nB = 50, test_type = "non-inferiority")
# Sample size for `"equivalence"` test
two_mean_size(muA = 5, muB = 4, delta = 5, kappa = 1, sd = 10,
alpha = 0.05, beta = 0.2, test_type = "equivalence")
# Power of `"equivalence"` test
two_mean_size(muA = 5, muB = 4, delta = 5, kappa = 1, sd = 10,
alpha = 0.05, nB = 108, test_type = "equivalence")
Run the code above in your browser using DataLab