f <- system.file("external/test.grd", package="raster")
r <- raster(f)
histogram(r)
s <- stack(r, r+500, r-500)
## Same breakpoints across panels
histogram(s)
## Each panel with different breakpoints
histogram(s, breaks=NULL)
histogram(s, breaks='Sturges')
histogram(s, breaks=30)
## Not run:
# ##Solar irradiation data from CMSAF http://dx.doi.org/10.5676/EUM_SAF_CM/RAD_MVIRI/V001
# old <- setwd(tempdir())
# download.file('https://raw.github.com/oscarperpinan/spacetime-vis/master/data/SISmm2008_CMSAF.zip',
# 'SISmm2008_CMSAF.zip', method='wget')
# unzip('SISmm2008_CMSAF.zip')
#
# listFich <- dir(pattern='\.nc')
# stackSIS <- stack(listFich)
# stackSIS <- stackSIS*24 ##from irradiance (W/m2) to irradiation Wh/m2
#
# idx <- seq(as.Date('2008-01-15'), as.Date('2008-12-15'), 'month')
#
# SISmm <- setZ(stackSIS, idx)
# names(SISmm) <- month.abb
#
# histogram(SISmm)
# histogram(SISmm, FUN=as.yearqtr)
#
# ## With the formula interface you can create histograms for a set of variables
# histogram(~ Jan + Dec, data=SISmm)
# ## Or use the coordinates for generating zonal histograms.
# ## For example, five histograms for each latitude zone
# histogram(~Jan|cut(y, 5), data=SISmm)
# ## More sophisticated bands can be defined using the dirXY argument
# histogram(~Jan|cut(dirXY, 5), dirXY = x^2 + y^2, data=SISmm)
#
# setwd(old)
# ## End(Not run)
## Not run:
# ##http://neo.sci.gsfc.nasa.gov/Search.html?group=64
# pop <- raster('875430rgb-167772161.0.FLOAT.TIFF')
# pop[pop==99999] <- NA
# levelplot(pop, zscaleLog=10, par.settings=BTCTheme,
# panel=panel.levelplot.raster, interpolate=TRUE)
#
# ##http://neo.sci.gsfc.nasa.gov/Search.html?group=20
# landClass <- raster('241243rgb-167772161.0.TIFF')
# landClass[landClass==254] <- NA
#
#
# s <- stack(pop, landClass)
# names(s) <- c('pop', 'landClass')
#
# histogram(~asinh(pop)|landClass, data=s,
# scales=list(relation='free'),
# strip=strip.custom(strip.levels=TRUE))
# ## End(Not run)
Run the code above in your browser using DataLab