Usage
jeffreysci(x, n, ai = 0.5, bi = 0.5, cc = 0, level = 0.95,
distrib = "bin", adj = TRUE, ...)
Arguments
x
Numeric vector of number of events.
n
Numeric vector of sample sizes (for binomial rates) or exposure
times (for Poisson rates).
ai, bi
Numbers defining the Beta prior distribution (default ai = bi =
0.5 for Jeffreys interval). Gamma prior for Poisson rates requires only ai.
cc
Number or logical specifying (amount of) "continuity correction".
cc = 0 (default) gives Jeffreys interval, cc = 0.5 gives the
Clopper-Pearson interval. A value between 0 and 0.5 allows a compromise
between proximate and conservative coverage.
level
Number specifying confidence level (between 0 and 1, default
0.95).
distrib
Character string indicating distribution assumed for the input
data: "bin" = binomial (default), "poi" = Poisson.
adj
Logical (default TRUE) indicating whether to apply the boundary
adjustment recommended on p108 of Brown et al. (set to FALSE if informative
priors are used)