A convenience wrapper for bdiv_table() + stats_table().
bdiv_stats(
biom,
regr = NULL,
stat.by = NULL,
bdiv = "Bray-Curtis",
weighted = TRUE,
tree = NULL,
within = NULL,
between = NULL,
split.by = NULL,
transform = "none",
test = "emmeans",
fit = "gam",
at = NULL,
level = 0.95,
alt = "!=",
mu = 0,
p.adj = "fdr"
)A tibble data.frame with fields from the table below. This tibble
object provides the $code operator to print the R code used to generate
the statistics.
| Field | Description |
| .mean | Estimated marginal mean. See emmeans::emmeans(). |
| .mean.diff | Difference in means. |
| .slope | Trendline slope. See emmeans::emtrends(). |
| .slope.diff | Difference in slopes. |
| .h1 | Alternate hypothesis. |
| .p.val | Probability that null hypothesis is correct. |
| .adj.p | .p.val after adjusting for multiple comparisons. |
| .effect.size | Effect size. See emmeans::eff_size(). |
| .lower | Confidence interval lower bound. |
| .upper | Confidence interval upper bound. |
| .se | Standard error. |
| .n | Number of samples. |
| .df | Degrees of freedom. |
| .stat | Wilcoxon or Kruskal-Wallis rank sum statistic. |
| .t.ratio | .mean / .se |
| .r.sqr | Percent of variation explained by the model. |
| .adj.r | .r.sqr, taking degrees of freedom into account. |
| .aic | Akaike Information Criterion (predictive models). |
| .bic | Bayesian Information Criterion (descriptive models). |
| .loglik | Log-likelihood goodness-of-fit score. |
| .fit.p | P-value for observing this fit by chance. |
An rbiom object, such as from as_rbiom().
Any value accepted by as_rbiom() can also be given here.
Dataset field with the x-axis (independent; predictive)
values. Must be numeric. Default: NULL
Dataset field with the statistical groups. Must be
categorical. Default: NULL
Beta diversity distance algorithm(s) to use. Options are:
"Bray-Curtis", "Manhattan", "Euclidean",
"Jaccard", and "UniFrac". For "UniFrac", a
phylogenetic tree must be present in biom or explicitly
provided via tree=. Multiple/abbreviated values allowed.
Default: "Bray-Curtis"
Take relative abundances into account. When
weighted=FALSE, only presence/absence is considered.
Multiple values allowed. Default: TRUE
A phylo object representing the phylogenetic
relationships of the taxa in biom. Only required when
computing UniFrac distances. Default: biom$tree
Dataset field(s) for intra- or inter- sample
comparisons. Alternatively, dataset field names given elsewhere can
be prefixed with '==' or '!=' to assign them to within or
between, respectively. Default: NULL
Dataset field(s) that the data should be split by prior to
any calculations. Must be categorical. Default: NULL
Transformation to apply. Options are:
c("none", "rank", "log", "log1p", "sqrt", "percent"). "rank" is
useful for correcting for non-normally distributions before applying
regression statistics. Default: "none"
Method for computing p-values: 'wilcox', 'kruskal',
'emmeans', or 'emtrends'. Default: 'emmeans'
How to fit the trendline. 'lm', 'log', or 'gam'.
Default: 'gam'
Position(s) along the x-axis where the means or slopes should be
evaluated. Default: NULL, which samples 100 evenly spaced positions
and selects the position where the p-value is most significant.
The confidence level for calculating a confidence interval.
Default: 0.95
Alternative hypothesis direction. Options are '!='
(two-sided; not equal to mu), '<' (less than mu), or '>'
(greater than mu). Default: '!='
Reference value to test against. Default: 0
Method to use for multiple comparisons adjustment of
p-values. Run p.adjust.methods for a list of available
options. Default: "fdr"
Other beta_diversity:
bdiv_boxplot(),
bdiv_clusters(),
bdiv_corrplot(),
bdiv_heatmap(),
bdiv_ord_plot(),
bdiv_ord_table(),
bdiv_table(),
distmat_stats()
Other stats_tables:
adiv_stats(),
distmat_stats(),
stats_table(),
taxa_stats()
library(rbiom)
biom <- rarefy(hmp50)
bdiv_stats(biom, stat.by = "Sex", bdiv = c("bray", "unifrac"))[,1:7]
biom <- subset(biom, `Body Site` %in% c('Saliva', 'Stool', 'Buccal mucosa'))
bdiv_stats(biom, stat.by = "Body Site", split.by = "==Sex")[,1:6]
Run the code above in your browser using DataLab