Learn R Programming

rcompanion (version 1.4.0)

pairwiseNominalIndependence: Pairwise tests of independence for nominal data

Description

Conducts pairwise tests for a 2-dimensional matrix, in which at at least one dimension has more than two levels, as a post-hoc test. Conducts Fisher exact, Chi-square, or G-test.

Usage

pairwiseNominalIndependence(x, compare = "row", fisher = TRUE, gtest = TRUE, chisq = TRUE, method = "fdr", correct = "none", digits = 3, ...)

Arguments

x
A two-way contingency table. At least one dimension should have more than two levels.
compare
If "row", treats the rows as the grouping variable. If "column", treats the columns as the grouping variable.
fisher
If "TRUE", conducts fisher exact test.
gtest
If "TRUE", conducts G-test.
chisq
If "TRUE", conducts Chi-square test of association.
method
The method to adjust multiple p-values. See p.adjust.
correct
The correction method to pass to GTest.
digits
The number of significant digits in the output.
...
Additional arguments, passed to fisher.test, GTest, or chisq.test.

Value

A data frame of comparisons, p-values, and adjusted p-values.

References

http://rcompanion.org/handbook/H_04.html

See Also

pairwiseMcnemar, groupwiseCMH, nominalSymmetryTest, pairwiseNominalMatrix

Examples

Run this code
### Independence test for a 4 x 2 matrix
data(Anderson)
fisher.test(Anderson)
Anderson = Anderson[(c("Heimlich", "Bloom", "Dougal", "Cobblestone")),]
PT = pairwiseNominalIndependence(Anderson,
                                 fisher = TRUE,
                                 gtest  = FALSE,
                                 chisq  = FALSE)
PT                                
cldList(comparison = PT$Comparison,
        p.value    = PT$p.adj.Fisher,
        threshold  = 0.05)                             
                                                              

Run the code above in your browser using DataLab