
Last chance! 50% off unlimited learning
Sale ends in
Generic function for calculating individual-level diversity.
inddiv(data, qs)# S4 method for powermean
inddiv(data, qs)
# S4 method for relativeentropy
inddiv(data, qs)
# S4 method for metacommunity
inddiv(data, qs)
matrix
of mode numeric
; containing diversity
components.
vector
of mode numeric
; parameter of conservatism.
Returns a standard output of class tibble
, with columns:
measure
: raw or normalised, alpha, beta, rho, or gamma
q
: parameter of conservatism
type_level
: "subcommunity"
type_name
: label attributed to type
partition_level
: level of diversity, i.e. subcommunity
partition_name
: label attributed to partition
diversity
: calculated subcommunity diversity
data
may be input as three different classes:
power_mean
: calculates raw and normalised subcomunity alpha, rho
or gamma diversity by taking the powermean of diversity components
relativeentropy
: calculates raw or normalised subcommunity beta
diversity by taking the relative entropy of diversity components
metacommunity
: calculates all subcommunity measures of diversity
Reeve, R., T. Leinster, C. Cobbold, J. Thompson, N. Brummitt, S. Mitchell, and L. Matthews. 2016. How to partition diversity. arXiv 1404.6520v3:1<U+2013>9.
# NOT RUN {
# Define metacommunity
pop <- data.frame(a = c(1,3), b = c(1,1))
row.names(pop) <- paste0("sp", 1:2)
pop <- pop/sum(pop)
meta <- metacommunity(pop)
# Calculate subcommunity gamma diversity (takes the power mean)
g <- raw_gamma(meta)
inddiv(g, 0:2)
# Calculate subcommunity beta diversity (takes the relative entropy)
b <- raw_beta(meta)
inddiv(b, 0:2)
# Calculate all measures of individual diversity
inddiv(meta, 0:2)
# }
Run the code above in your browser using DataLab