Learn R Programming

⚠️There's a newer version (2.1.5) of this package.Take me there.

readr

The goal of readr is to provide a fast and friendly way to read tabular data into R. The most important functions are:

  • Read delimited files: read_delim(), read_csv(), read_tsv(), read_csv2().
  • Read fixed width files: read_fwf(), read_table().
  • Read lines: read_lines().
  • Read whole file: read_file().
  • Re-parse existing data frame: type_convert().

Installation

readr is now available from CRAN.

install.packages("readr")

You can try out the dev version with:

# install.packages("devtools")
devtools::install_github("hadley/readr")

Usage

library(readr)
library(dplyr)

mtcars_path <- tempfile(fileext = ".csv")
write_csv(mtcars, mtcars_path)

# Read a csv file into a data frame
read_csv(mtcars_path)
# Read lines into a vector
read_lines(mtcars_path)
# Read whole file into a single string
read_file(mtcars_path)

See vignette("column-types") on how readr parses columns, and how you can override the defaults.

Output

read_csv() produces a data frame with the following properties:

  • Characters are never automatically converted to factors (i.e. no more stringsAsFactors = FALSE).

  • Column names are left as is, not munged into valid R identifiers (i.e. there is no check.names = TRUE).

  • The data frame is given class c("tbl_df", "tbl", "data.frame") so if you also use dplyr you'll get an enhanced display.

  • Row names are never set.

Problems

If there are any problems parsing the file, the read_ function will throw a warning telling you how many problems there are. You can then use the problems() function to access a data frame that gives information about each problem:

df <- read_csv(col_types = "dd", col_names = c("x", "y"), skip = 1, "
1,2
a,b
")
#> Warning message: There were 2 problems. See problems(x) for more details
problems(df)
#>   row col expected actual
#> 1   2   1 a double      a
#> 2   2   2 a double      b

It's likely that there will be cases that you can never load without some manual regexp-based munging in R. Load those columns with col_character(), fix them up as needed, then use convert_types() to re-run the automated conversion on every character column in the data frame. Alternatively, you can use parse_integer(), parse_numeric(), parse_date() etc to parse a single character vector at a time.

Compared to base functions

Compared to the corresponding base functions, readr functions:

  • Use a consistent naming scheme for the parameters (e.g. col_names and

col_types not header and colClasses).

  • Are much faster (up to 10x faster).

  • Have a helpful progress bar if loading is going to take a while.

  • All functions work exactly the same way regardless of the current locale. To override the US-centric defaults, use locale().

Compared to fread()

data.table has a function similar to read_csv() called fread. Compared to fread, readr:

  • Is slower (currently ~1.2-2x slower. If you want absolutely the best performance, use data.table::fread().

  • Readr has a slightly more sophisticated parser, recognising both doubled ("""") and backslash escapes ("""). Readr allows you to read factors and date times directly from disk.

  • fread() saves you work by automatically guessing the delimiter, whether or not the file has a header, how many lines to skip by default and more. Readr forces you to supply these parameters.

  • The underlying designs are quite different. Readr is designed to be general, and dealing with new types of rectangular data just requires implementing a new tokenizer. fread() is designed to be as fast as possible. fread() is pure C, readr is C++ (and Rcpp).

Acknowledgements

Thanks to:

  • Joe Cheng for showing me the beauty of deterministic finite automata for parsing, and for teaching me why I should write a tokenizer.

  • JJ Allaire for helping me come up with a design that makes very few copies, and is easy to extend.

  • Dirk Eddelbuettel for coming up with the name!

Copy Link

Version

Install

install.packages('readr')

Monthly Downloads

800,350

Version

0.2.1

License

GPL (>= 2) | file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Hadley Wickham

Last Published

January 11th, 2024

Functions in readr (0.2.1)

problems

Retrieve parsing problems.
collector

Parse character vectors into typed columns.
write_delim

Save a data frame to a delimited file.
read_fwf

Read a fixed width file.
count_fields

Count the number of fields in each line of a file.
Tokenizers

Tokenizers.
datasource

Create a source object.
tokenize

Tokenize a file/string.
parse_vector

Parse a character vector.
read_delim

Read a delimited file into a data frame.
read_log

Read common/combined log file.
read_file

Read a file into a string.
type_convert

Re-convert character columns in existing data frame.
locale

Create locales
cols

Create column specification
read_rds

Read object from RDS file.
parse_datetime

Parse a character vector of dates or date times.
read_lines

Read lines from a file or string.
guess_encoding

Guess encoding of file.
date_names

Create or retrieve date names
write_rds

Write a single R object to file
read_table

Read text file where columns are separated by whitespace.