set.seed(123)
mock_X <- matrix(rnorm(20 * 5), nrow = 20)
colnames(mock_X) <- paste0("feat_", seq_len(5))
rownames(mock_X) <- paste0("sample_", seq_len(20))
sample_data <- data.frame(
sample_id = rownames(mock_X),
group = factor(rep(c("A", "B"), each = 10)),
time = factor(rep(c("T1", "T2"), times = 10)),
subject_id = factor(rep(seq_len(10), each = 2)),
stringsAsFactors = FALSE
)
rownames(sample_data) <- sample_data$sample_id
fit_df <- data.frame(
feat_id = rep(colnames(mock_X), each = 2),
Coefficient = rep(c("(Intercept)", "groupB"), 5),
Estimate = rnorm(10),
`Pr(>|t|)` = runif(10),
stringsAsFactors = FALSE
)
# Mock dana object
dana_obj <- list(
X = mock_X,
sdata = sample_data,
formula_rhs = ~ group,
fit = fit_df,
lrt = data.frame(),
ranef = data.frame()
)
class(dana_obj) <- "dana"
# Add adjusted P-values
dana_obj <- dana_obj |>
adjust_pval(dana_obj,
padj_method = c("BH", "bonferroni"),
padj_method_LRT = NULL,
padj_by = "terms",
verbose = FALSE)
Run the code above in your browser using DataLab