mock_X <- matrix(
rnorm(50 * 10) +
rep(c(rep(0, 25), rep(2, 25)), each = 10) * rep(1:10 %in% 1:3, each = 50),
nrow = 50
)
rownames(mock_X) <- paste0("sample", 1:50)
colnames(mock_X) <- paste0("feat", 1:10)
sample_data <- data.frame(
sample_id = rownames(mock_X),
group = factor(rep(c("A", "B"), each = 25)),
subject = factor(rep(1:25, each = 2)),
row.names = rownames(mock_X)
)
# Example with parallel computation setup (not run)
# future::plan(multisession)
# progressr::handlers(global = TRUE)
# progressr::with_progress({
result <- dana(X = mock_X,
sample_data = sample_data,
formula_rhs = ~ group + (1 | subject),
term_LRT = c("group", "1 | subject"), # Multiple terms allowed
platform = "ms",
assay = "lipidomics",
verbose = FALSE
)
# })
# Modify `dana` object at once with pipes (not run)
# dana_obj <- dana_obj |> adjust_pval() |> add_feat_name() |> ready_plots()
Run the code above in your browser using DataLab