Learn R Programming

⚠️There's a newer version (1.2.1) of this package.Take me there.

recipes (version 0.1.14)

Preprocessing Tools to Create Design Matrices

Description

An extensible framework to create and preprocess design matrices. Recipes consist of one or more data manipulation and analysis "steps". Statistical parameters for the steps can be estimated from an initial data set and then applied to other data sets. The resulting design matrices can then be used as inputs into statistical or machine learning models.

Copy Link

Version

Install

install.packages('recipes')

Monthly Downloads

215,376

Version

0.1.14

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Max Kuhn

Last Published

October 17th, 2020

Functions in recipes (0.1.14)

check_new_values

Check for New Values
check_range

Check Range Consistency
format_ch_vec

Helpers for printing step functions
add_step

Add a New Operation to the Current Recipe
bake

Apply a Trained Data Recipe
fixed

Helper Functions for Profile Data Sets
discretize

Discretize Numeric Variables
recipes

recipes: A package for computing and preprocessing design matrices.
recipe

Create a Recipe for Preprocessing Data
formula.recipe

Create a Formula from a Prepared Recipe
check_missing

Check for Missing Values
juice

Extract Finalized Training Set
check_name

check that newly created variable names don't overlap
names0

Naming Tools
recipes_pkg_check

Update packages
step_YeoJohnson

Yeo-Johnson Transformation
step_classdist

Distances to Class Centroids
step_filter

Filter rows using dplyr
step_lowerimpute

Impute Numeric Data Below the Threshold of Measurement
step_geodist

Distance between two locations
step_corr

High Correlation Filter
check_cols

Check if all Columns are Present
prepper

Wrapper function for preparing recipes within resampling
check_class

Check Variable Class
step

step sets the class of the step and check is for checks.
step_meanimpute

Impute Numeric Data Using the Mean
yj_transform

Internal Functions
step_BoxCox

Box-Cox Transformation for Non-Negative Data
roles

Manually Alter Roles
prep

Train a Data Recipe
selections

Methods for Select Variables in Step Functions
step_naomit

Remove observations with missing values
step_intercept

Add intercept (or constant) column
step_discretize

Discretize Numeric Variables
step_kpca_poly

Polynomial Kernel PCA Signal Extraction
step_arrange

Sort rows using dplyr
step_kpca_rbf

Radial Basis Function Kernel PCA Signal Extraction
step_downsample

Down-Sample a Data Set Based on a Factor Variable
step_inverse

Inverse Transformation
step_normalize

Center and scale numeric data
step_novel

Simple Value Assignments for Novel Factor Levels
step_nnmf

NNMF Signal Extraction
step_factor2string

Convert Factors to Strings
step_holiday

Holiday Feature Generator
step_dummy

Dummy Variables Creation
step_relu

Apply (Smoothed) Rectified Linear Transformation
step_pca

PCA Signal Extraction
update.step

Update a recipe step
step_relevel

Relevel factors to a desired level
step_other

Collapse Some Categorical Levels
step_sample

Sample rows using dplyr
step_bagimpute

Imputation via Bagged Trees
detect_step

Detect if a particular step or check is used in a recipe
has_role

Role Selection
fully_trained

Check to see if a recipe is trained/prepared
check_type

Quantitatively check on variables
step_lag

Create a lagged predictor
step_isomap

Isomap Embedding
step_hyperbolic

Hyperbolic Transformations
step_invlogit

Inverse Logit Transformation
step_bin2factor

Create a Factors from A Dummy Variable
step_log

Logarithmic Transformation
step_logit

Logit Transformation
step_mutate

Add new variables using mutate
step_scale

Scaling Numeric Data
step_pls

Partial Least Squares Feature Extraction
step_rm

General Variable Filter
step_upsample

Up-Sample a Data Set Based on a Factor Variable
step_unorder

Convert Ordered Factors to Unordered Factors
step_poly

Orthogonal Polynomial Basis Functions
step_rollimpute

Impute Numeric Data Using a Rolling Window Statistic
step_lincomb

Linear Combination Filter
step_mutate_at

Mutate multiple columns
step_ns

Natural Spline Basis Functions
step_spatialsign

Spatial Sign Preprocessing
step_num2factor

Convert Numbers to Factors
reexports

Objects exported from other packages
required_pkgs.step_depth

S3 methods for tracking which additional packages are needed for steps.
terms_select

Select Terms in a Step Function.
summary.recipe

Summarize a Recipe
step_regex

Create Dummy Variables using Regular Expressions
step_ratio

Ratio Variable Creation
print.recipe

Print a Recipe
step_bs

B-Spline Basis Functions
rand_id

Make a random identification field for steps
step_sqrt

Square Root Transformation
step_date

Date Feature Generator
step_center

Centering numeric data
step_depth

Data Depths
step_impute_linear

Imputation of numeric variables via a linear model.
step_medianimpute

Impute Numeric Data Using the Median
step_ica

ICA Signal Extraction
step_cut

Cut a numeric variable into a factor
step_count

Create Counts of Patterns using Regular Expressions
step_integer

Convert values to predefined integers
step_knnimpute

Imputation via K-Nearest Neighbors
step_interact

Create Interaction Variables
step_kpca

Kernel PCA Signal Extraction
step_profile

Create a Profiling Version of a Data Set
step_nzv

Near-Zero Variance Filter
step_modeimpute

Impute Nominal Data Using the Most Common Value
step_ordinalscore

Convert Ordinal Factors to Numeric Scores
step_rename

Rename variables by name
step_range

Scaling Numeric Data to a Specific Range
step_slice

Filter rows by position using dplyr
step_rename_at

Rename multiple columns
step_shuffle

Shuffle Variables
step_string2factor

Convert Strings to Factors
step_unknown

Assign missing categories to "unknown"
step_zv

Zero Variance Filter
tidy.recipe

Tidy the Result of a Recipe
tunable.step_bagimpute

tunable methods for recipes
step_window

Moving Window Functions