Learn R Programming

⚠️There's a newer version (1.2.1) of this package.Take me there.

recipes (version 0.1.5)

Preprocessing Tools to Create Design Matrices

Description

An extensible framework to create and preprocess design matrices. Recipes consist of one or more data manipulation and analysis "steps". Statistical parameters for the steps can be estimated from an initial data set and then applied to other data sets. The resulting design matrices can then be used as inputs into statistical or machine learning models.

Copy Link

Version

Install

install.packages('recipes')

Monthly Downloads

218,325

Version

0.1.5

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Max Kuhn

Last Published

March 21st, 2019

Functions in recipes (0.1.5)

bake

Apply a Trained Data Recipe
covers

Raw Cover Type Data
okc

OkCupid Data
reexports

Objects exported from other packages
credit_data

Credit Data
roles

Manually Alter Roles
detect_step

Detect if a particular step or check is used in a recipe
prep

Train a Data Recipe
discretize

Discretize Numeric Variables
fixed

Helper Functions for Profile Data Sets
prepper

Wrapper function for preparing recipes within resampling
recipe

Create a Recipe for Preprocessing Data
step_arrange

Sort rows using dplyr
step_bagimpute

Imputation via Bagged Trees
step_filter

Filter rows using dplyr
step_geodist

Distance between two locations
yj_trans

Internal Functions
step_date

Date Feature Generator
step_depth

Data Depths
step_ica

ICA Signal Extraction
step_BoxCox

Box-Cox Transformation for Non-Negative Data
step_YeoJohnson

Yeo-Johnson Transformation
step_dummy

Dummy Variables Creation
step_integer

Convert values to predefined integers
step_intercept

Add intercept (or constant) column
step_interact

Create Interaction Variables
step_factor2string

Convert Factors to Strings
step_ordinalscore

Convert Ordinal Factors to Numeric Scores
step_other

Collapse Some Categorical Levels
step_lincomb

Linear Combination Filter
step_holiday

Holiday Feature Generator
step_log

Logarithmic Transformation
step_regex

Create Dummy Variables using Regular Expressions
step_num2factor

Convert Numbers to Factors
step_relu

Apply (Smoothed) Rectified Linear Transformation
step_hyperbolic

Hyperbolic Transformations
step_shuffle

Shuffle Variables
step_nzv

Near-Zero Variance Filter
step_kpca

Kernel PCA Signal Extraction
step_ratio

Ratio Variable Creation
step_range

Scaling Numeric Data to a Specific Range
step_slice

Filter rows by position using dplyr
tidy.recipe

Tidy the Result of a Recipe
terms_select

Select Terms in a Step Function.
check_cols

Check if all Columns are Present
check_missing

Check for Missing Values
recipes

recipes: A package for computing and preprocessing design matrices.
recipes_pkg_check

Update packages
step_center

Centering Numeric Data
step_classdist

Distances to Class Centroids
step_lag

Create a lagged predictor
step_sqrt

Square Root Transformation
step_spatialsign

Spatial Sign Preprocessing
step_isomap

Isomap Embedding
step_pca

PCA Signal Extraction
step_pls

Partial Least Squares Feature Extraction
Smithsonian

Smithsonian Museums
step_sample

Sample rows using dplyr
add_step

Add a New Operation to the Current Recipe
step_knnimpute

Imputation via K-Nearest Neighbors
step_lowerimpute

Impute Numeric Data Below the Threshold of Measurement
step_logit

Logit Transformation
has_role

Role Selection
step_novel

Simple Value Assignments for Novel Factor Levels
juice

Extract Finalized Training Set
step_scale

Scaling Numeric Data
step_upsample

Up-Sample a Data Set Based on a Factor Variable
print.recipe

Print a Recipe
step_window

Moving Window Functions
check_name

check that newly created variable names don't overlap
rand_id

Make a random identification field for steps
check_range

Check Range Consistency
formula.recipe

Create a Formula from a Prepared Recipe
fully_trained

Check to see if a recipe is trained/prepared
step_bin2factor

Create a Factors from A Dummy Variable
step_ns

Nature Spline Basis Functions
step_rm

General Variable Filter
selections

Methods for Select Variables in Step Functions
step_rollimpute

Impute Numeric Data Using a Rolling Window Statistic
step_string2factor

Convert Strings to Factors
step_unorder

Convert Ordered Factors to Unordered Factors
step_discretize

Discretize Numeric Variables
step

step sets the class of the step and check is for checks.
step_bs

B-Spline Basis Functions
step_downsample

Down-Sample a Data Set Based on a Factor Variable
step_corr

High Correlation Filter
step_count

Create Counts of Patterns using Regular Expressions
step_meanimpute

Impute Numeric Data Using the Mean
step_medianimpute

Impute Numeric Data Using the Median
step_naomit

Remove observations with missing values
step_inverse

Inverse Transformation
step_invlogit

Inverse Logit Transformation
step_modeimpute

Impute Nominal Data Using the Most Common Value
step_mutate

Add new variables using mutate
step_zv

Zero Variance Filter
step_nnmf

NNMF Signal Extraction
summary.recipe

Summarize a Recipe
step_poly

Orthogonal Polynomial Basis Functions
step_profile

Create a Profiling Version of a Data Set
update.step

Update a recipe step
names0

Naming Tools
check_type

Quantitatively check on variables
biomass

Biomass Data