
Last chance! 50% off unlimited learning
Sale ends in
step_hyperbolic
creates a specification of a
recipe step that will transform data using a hyperbolic
function.
step_hyperbolic(
recipe,
...,
role = NA,
trained = FALSE,
func = c("sinh", "cosh", "tanh"),
inverse = TRUE,
columns = NULL,
skip = FALSE,
id = rand_id("hyperbolic")
)
An updated version of recipe
with the new step added to the
sequence of any existing operations.
A recipe object. The step will be added to the sequence of operations for this recipe.
One or more selector functions to choose variables
for this step. See selections()
for more details.
Not used by this step since no new variables are created.
A logical to indicate if the quantities for preprocessing have been estimated.
A character value for the function. Valid values are "sinh", "cosh", or "tanh".
A logical: should the inverse function be used?
A character string of variable names that will
be populated (eventually) by the terms
argument.
A logical. Should the step be skipped when the
recipe is baked by bake()
? While all operations are baked
when prep()
is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE
as it may affect
the computations for subsequent operations.
A character string that is unique to this step to identify it.
When you tidy()
this step, a tibble with columns
terms
(the columns that will be affected), inverse
, and func
is
returned.
The underlying operation does not allow for case weights.
Other individual transformation steps:
step_BoxCox()
,
step_YeoJohnson()
,
step_bs()
,
step_harmonic()
,
step_inverse()
,
step_invlogit()
,
step_logit()
,
step_log()
,
step_mutate()
,
step_ns()
,
step_percentile()
,
step_poly()
,
step_relu()
,
step_sqrt()
set.seed(313)
examples <- matrix(rnorm(40), ncol = 2)
examples <- as.data.frame(examples)
rec <- recipe(~ V1 + V2, data = examples)
cos_trans <- rec %>%
step_hyperbolic(
all_numeric_predictors(),
func = "cosh", inverse = FALSE
)
cos_obj <- prep(cos_trans, training = examples)
transformed_te <- bake(cos_obj, examples)
plot(examples$V1, transformed_te$V1)
tidy(cos_trans, number = 1)
tidy(cos_obj, number = 1)
Run the code above in your browser using DataLab