
Last chance! 50% off unlimited learning
Sale ends in
step_isomap
creates a specification of a recipe
step that will convert numeric data into one or more new
dimensions.
step_isomap(
recipe,
...,
role = "predictor",
trained = FALSE,
num_terms = 5,
neighbors = 50,
options = list(.mute = c("message", "output")),
res = NULL,
columns = NULL,
prefix = "Isomap",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("isomap")
)
An updated version of recipe
with the new step added to the
sequence of any existing operations.
A recipe object. The step will be added to the sequence of operations for this recipe.
One or more selector functions to choose variables
for this step. See selections()
for more details.
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.
A logical to indicate if the quantities for preprocessing have been estimated.
The number of isomap dimensions to retain as new
predictors. If num_terms
is greater than the number of columns
or the number of possible dimensions, a smaller value will be
used.
The number of neighbors.
A list of options to dimRed::Isomap()
.
The dimRed::Isomap()
object is stored
here once this preprocessing step has be trained by
prep()
.
A character string of variable names that will be populated elsewhere.
A character string for the prefix of the resulting new variables. See notes below.
A logical to keep the original variables in the
output. Defaults to FALSE
.
A logical. Should the step be skipped when the
recipe is baked by bake()
? While all operations are baked
when prep()
is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE
as it may affect
the computations for subsequent operations.
A character string that is unique to this step to identify it.
When you tidy()
this step, a tibble with column
terms
(the selectors or variables selected) is returned.
The underlying operation does not allow for case weights.
Isomap is a form of multidimensional scaling (MDS). MDS methods try to find a reduced set of dimensions such that the geometric distances between the original data points are preserved. This version of MDS uses nearest neighbors in the data as a method for increasing the fidelity of the new dimensions to the original data values.
This step requires the dimRed, RSpectra, igraph, and RANN packages. If not installed, the step will stop with a note about installing these packages.
It is advisable to center and scale the variables prior to
running Isomap (step_center
and step_scale
can be
used for this purpose).
The argument num_terms
controls the number of components that
will be retained (the original variables that are used to derive
the components are removed from the data). The new components
will have names that begin with prefix
and a sequence of
numbers. The variable names are padded with zeros. For example,
if num_terms < 10
, their names will be Isomap1
-
Isomap9
. If num_terms = 101
, the names would be
Isomap001
- Isomap101
.
De Silva, V., and Tenenbaum, J. B. (2003). Global versus local methods in nonlinear dimensionality reduction. Advances in Neural Information Processing Systems. 721-728.
dimRed, a framework for dimensionality reduction, https://github.com/gdkrmr
Other multivariate transformation steps:
step_classdist()
,
step_depth()
,
step_geodist()
,
step_ica()
,
step_kpca_poly()
,
step_kpca_rbf()
,
step_kpca()
,
step_mutate_at()
,
step_nnmf_sparse()
,
step_nnmf()
,
step_pca()
,
step_pls()
,
step_ratio()
,
step_spatialsign()
# \donttest{
data(biomass, package = "modeldata")
biomass_tr <- biomass[biomass$dataset == "Training", ]
biomass_te <- biomass[biomass$dataset == "Testing", ]
rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr
)
im_trans <- rec %>%
step_YeoJohnson(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_isomap(all_numeric_predictors(), neighbors = 100, num_terms = 2)
if (FALSE) {
im_estimates <- prep(im_trans, training = biomass_tr)
im_te <- bake(im_estimates, biomass_te)
rng <- extendrange(c(im_te$Isomap1, im_te$Isomap2))
plot(im_te$Isomap1, im_te$Isomap2,
xlim = rng, ylim = rng
)
tidy(im_trans, number = 3)
tidy(im_estimates, number = 3)
}
# }
Run the code above in your browser using DataLab