library(refund)
library(dplyr)
##### FPCA Example on real data #####
data(cd4)
SC = fpca.sc(cd4)
plot_shiny(SC)
##### FPCA Examples on simulated data #####
set.seed(2678695)
n = 101
m = 101
s1 = 20
s2 = 10
s = 4
t = seq(-1, 1, l=m)
v1 = t + sin(pi*t)
v2 = cos(3*pi*t)
V = cbind(v1/sqrt(sum(v1^2)), v2/sqrt(sum(v2^2)))
U = matrix(rnorm(n*2), n, 2)
D = diag(c(s1^2, s2^2))
eps = matrix(rnorm(m*n, sd=s), n, m)
Y = U%*%D%*%t(V) + eps
SC = fpca.sc(Y)
FACE = fpca.face(Y)
SSVD = fpca.ssvd(Y, verbose=FALSE)
S = fpca2s(Y)
plot_shiny(SC)
plot_shiny(FACE)
plot_shiny(SSVD)
plot_shiny(S)
##### FoSR Example #####
data(DTI)
DTI = subset(DTI, select = c(cca, case, pasat))
DTI = DTI[complete.cases(DTI),]
DTI$gender = factor(sample(c("male","female"), dim(DTI)[1], replace = TRUE))
DTI$status = factor(sample(c("RRMS", "SPMS", "PPMS"), dim(DTI)[1], replace = TRUE))
fosr.dti1 = bayes_fosr(cca ~ pasat, data = DTI)
plot_shiny(fosr.dti1)
fosr.dti2 = bayes_fosr(cca ~ pasat * gender + status, data = DTI)
plot_shiny(fosr.dti2)
##### FoSR Example with outliers #####
DTI$cca[1,] = DTI$cca[1,] + .4
DTI$cca[2,] = DTI$cca[2,] + .4
fosr.dti3 = bayes_fosr(cca ~ pasat * gender + status, data = DTI)
plot_shiny(fosr.dti3)
##### MFPCA Example #####
data(DTI)
Y = DTI$cca
id = DTI$ID
mfpca.dti = mfpca.sc(Y=Y, id = id, twoway = FALSE)
plot_shiny(mfpca.dti)Run the code above in your browser using DataLab