if (FALSE) {
library(dplyr)
##### FPCA Example on real data #####
data(cd4)
SC = fpca.sc(cd4)
plot_shiny(SC)
##### FoSR Example #####
data(DTI)
DTI = DTI[complete.cases(DTI),]
fit.fosr = refund::bayes_fosr(cca ~ pasat + sex, data = DTI)
plot_shiny(fit.fosr)
##### FoSR Example with outliers #####
DTI$cca[1,] = DTI$cca[1,] + .4
DTI$cca[2,] = DTI$cca[2,] + .4
fosr.dti2 = bayes_fosr(cca ~ pasat + sex, data = DTI)
plot_shiny(fosr.dti2)
##### Longitudinal FoSR Examples #####
data(DTI2)
class(DTI2$cca) = class(DTI2$cca)[-1]
DTI2 = subset(DTI2, select = c(cca, id, pasat))
DTI2 = DTI2[complete.cases(DTI2),]
fosr.dti3 = bayes_fosr(cca ~ pasat + re(id), data = DTI2, Kt = 10, Kp = 4, cov.method = "FPCA")
plot_shiny(fosr.dti3)
plot_shiny(fosr.dti3$fpca.obj)
##### LFPCA Example on real data #####
data(DTI)
MS <- subset(DTI, case ==1) # subset data with multiple sclerosis (MS) case
index.na <- which(is.na(MS$cca))
Y <- MS$cca; Y[index.na] <- fpca.sc(Y)$Yhat[index.na]; sum(is.na(Y))
id <- MS$ID
visit.index <- MS$visit
visit.time <- MS$visit.time/max(MS$visit.time)
lfpca.dti1 <- fpca.lfda(Y = Y, subject.index = id,
visit.index = visit.index, obsT = visit.time,
LongiModel.method = 'lme',
mFPCA.pve = 0.95)
plot_shiny(lfpca.dti1)
lfpca.dti2 <- fpca.lfda(Y = Y, subject.index = id,
visit.index = visit.index, obsT = visit.time,
LongiModel.method = 'fpca.sc',
mFPCA.pve = 0.80, sFPCA.pve = 0.80)
plot_shiny(lfpca.dti2)
}
Run the code above in your browser using DataLab