Usage
ff(X, yind = NULL, xind = seq(0, 1, l = ncol(X)), basistype = c("te",
"t2", "s"), integration = c("simpson", "trapezoidal", "riemann"),
L = NULL, limits = NULL, splinepars = if (basistype != "s") {
list(bs = "ps", m = list(c(2, 1), c(2, 1))) } else { list(bs = "tp", m =
NA) }, check.ident = TRUE)
Arguments
X
an n by ncol(xind)
matrix of function evaluations
$X_i(s_{i1}),\dots, X_i(s_{iS})$; $i=1,\dots,n$.
yind
DEPRECATED used to supply matrix (or vector) of indices of
evaluations of $Y_i(t)$, no longer used.
xind
matrix (or vector) of indices of evaluations of $X_i(s)$;
i.e. matrix with rows $(s_{i1},\dots,s_{iS})$
basistype
defaults to "te
", i.e. a tensor product
spline to represent $\beta(t,s)$. Alternatively, use "s"
for
bivariate basis functions (see mgcv
's s<
integration
method used for numerical integration. Defaults to
"simpson"
's rule for calculating entries in L
. Alternatively
and for non-equidistant grids, "trapezoidal"
or "riemann"
.
"riemann"
integrati
L
optional: an n by ncol(xind)
matrix giving the weights for
the numerical integration over $s$.
limits
defaults to NULL for integration across the entire range of
$X(s)$, otherwise specifies the integration limits $s_{hi, i},
s_{lo, i}$: either one of "s or "s<=t"< code=""> for $(s_{hi,
i}, s_{lo, i}) = (0, t)$ or a function that takes <=t"<>
splinepars
optional arguments supplied to the basistype
-term.
Defaults to a cubic tensor product B-spline with marginal first difference
penalties, i.e. list(bs="ps", m=list(c(2, 1), c(2,1)))
. See
te
check.ident
check identifiability of the model spec. See Details and
References. Defaults to TRUE.