Usage
fosr.perm(Y=NULL, fdobj=NULL, X, con = NULL, X0 = NULL, con0 = NULL,
argvals = NULL, lambda = NULL, lambda0 = NULL, multi.sp = FALSE,
nperm, level = 0.05, plot = TRUE, xlabel = "", title = NULL,
prelim = 15, ...)
fosr.perm.fit(Y = NULL, fdobj = NULL, X, con = NULL, X0 = NULL,
con0 = NULL, argvals = NULL, lambda = NULL, lambda0 = NULL,
multi.sp = FALSE, nperm, prelim, ...)
fosr.perm.test(x, level=.05)
## S3 method for class 'fosr.perm':
plot(x, level = .05, xlabel = "", title = NULL, ...)Arguments
Y,fdobj
the functional responses, given as either an $n\times d$ matrix Y or a functional data object (class "fd") as in the fda package. X
the design matrix, whose columns represent scalar predictors.
con
a row vector or matrix of linear contrasts of the coefficient functions, to be restricted to equal zero.
X0
design matrix for the null-hypothesis model. If NULL, the null hypothesis is the intercept-only model.
con0
linear constraints for the null-hypothesis model.
argvals
the $d$ argument values at which the coefficient functions will be evaluated.
lambda
smoothing parameter value. If NULL, the smoothing parameter(s) will be estimated. See fosr for details. lambda0
smoothing parameter for null-hypothesis model.
multi.sp
a logical value indicating whether separate smoothing parameters should be estimated for each coefficient function. Currently must be FALSE if method = "OLS".
nperm
number of permutations.
prelim
number of preliminary permutations. The smoothing parameter in the main permutations will be fixed to the median value from these preliminary permutations. If prelim=0, this is not done.
level
significance level for the simultaneous test.
plot
logical value indicating whether to plot the real- and permuted-data pointwise F-type statistics.
xlabel
x-axis label for plots.
x
object of class fosr.perm, outputted by fosr.perm, fosr.perm.fit, or fosr.perm.test.
...
for fosr.perm and fosr.perm.fit, additional arguments passed to fosr. These arguments may include max.iter, method, gam.method, and scale