Usage
lf(X, xind = seq(0, 1, l = ncol(X)),
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
splinepars = list(bs = "ps", k= min(ceiling(n/4), 40), m = c(2, 2)),
presmooth = TRUE)
Arguments
X
an N
by J=ncol(xind)
matrix of function evaluations $X_i(t_{i1}),., X_i(t_{iJ}); i=1,.,N.$
xind
matrix (or vector) of indices of evaluations of $X_i(t)$; i.e. a matrix with ith row $(t_{i1},.,t_{iJ})$.
integration
method used for numerical integration. Defaults to "simpson
"'s rule for calculating entries in L
. Alternatively and for non-equidistant grids, "trapezoidal
" or "riemann
". "riemann
" integrati
L
optional: an N
by ncol(xind)
matrix giving the weights for the numerical integration over t
.
splinepars
optional arguments specifying options for representing and penalizing the functional coefficient $\beta(t)$. Defaults to a cubic B-spline with second-order difference penalties, i.e. list(bs="ps", m=c(2, 1))
See
presmooth
If true, the functional predictor is pre-smoothed prior to fitting. See smooth.basisPar
in package fda