Usage
ff(X, yind = NULL, xind = seq(0, 1, l = ncol(X)), basistype = c("te",
"t2", "s"), integration = c("simpson", "trapezoidal", "riemann"),
L = NULL, limits = NULL, splinepars = if (basistype != "s") {
list(bs = "ps", m = list(c(2, 1), c(2, 1))) } else { list(bs = "tp", m =
NA) }, check.ident = TRUE)Arguments
X
an n by ncol(xind) matrix of function evaluations
$X_i(s_{i1}),\dots, X_i(s_{iS})$; $i=1,\dots,n$.
yind
DEPRECATED used to supply matrix (or vector) of indices of
evaluations of $Y_i(t)$, no longer used.
xind
vector of indices of evaluations of $X_i(s)$,
i.e, $(s_{1},\dots,s_{S})$
basistype
defaults to "te", i.e. a tensor product
spline to represent $\beta(t,s)$. Alternatively, use "s" for
bivariate basis functions (see mgcv's s integration
method used for numerical integration. Defaults to
"simpson"'s rule for calculating entries in L. Alternatively
and for non-equidistant grids, "trapezoidal" or "riemann".
"riemann" integr
L
optional: an n by ncol(xind) matrix giving the weights for
the numerical integration over $s$.
limits
defaults to NULL for integration across the entire range of
$X(s)$, otherwise specifies the integration limits $s_{hi}(t),
s_{lo}(t)$: either one of "s or "s<=t"< code=""> for
$(s_{hi}(t), s_{lo}(t)) = (t, 0]$ or $[t, 0]$, respective=t"<>
splinepars
optional arguments supplied to the basistype-term.
Defaults to a cubic tensor product B-spline with marginal first difference
penalties, i.e. list(bs="ps", m=list(c(2, 1), c(2,1))). See
te< check.ident
check identifiability of the model spec. See Details and
References. Defaults to TRUE.