Usage
fosr.perm(Y = NULL, fdobj = NULL, X, con = NULL, X0 = NULL,
con0 = NULL, argvals = NULL, lambda = NULL, lambda0 = NULL,
multi.sp = FALSE, nperm, level = 0.05, plot = TRUE, xlabel = "",
title = NULL, prelim = 15, ...)
fosr.perm.fit(Y = NULL, fdobj = NULL, X, con = NULL, X0 = NULL,
con0 = NULL, argvals = NULL, lambda = NULL, lambda0 = NULL,
multi.sp = FALSE, nperm, prelim, ...)
fosr.perm.test(x, level = 0.05)
## S3 method for class 'fosr.perm':
plot(x, level = 0.05, xlabel = "", title = NULL, ...)
Arguments
Y,fdobj
the functional responses, given as either an $n\times d$
matrix Y or a functional data object (class "fd")
as in the fda package. X
the design matrix, whose columns represent scalar predictors.
con
a row vector or matrix of linear contrasts of the coefficient
functions, to be restricted to equal zero.
X0
design matrix for the null-hypothesis model. If NULL, the
null hypothesis is the intercept-only model.
con0
linear constraints for the null-hypothesis model.
argvals
the $d$ argument values at which the coefficient
functions will be evaluated.
lambda
smoothing parameter value. If NULL, the smoothing
parameter(s) will be estimated. See fosr for details. lambda0
smoothing parameter for null-hypothesis model.
multi.sp
a logical value indicating whether separate smoothing
parameters should be estimated for each coefficient function. Currently
must be FALSE if method = "OLS".
nperm
number of permutations.
level
significance level for the simultaneous test.
plot
logical value indicating whether to plot the real- and
permuted-data pointwise F-type statistics.
xlabel
x-axis label for plots.
prelim
number of preliminary permutations. The smoothing parameter
in the main permutations will be fixed to the median value from these
preliminary permutations. If prelim=0, this is not done.
x
object of class fosr.perm, outputted by fosr.perm,
fosr.perm.fit, or fosr.perm.test.
...
for fosr.perm and fosr.perm.fit, additional
arguments passed to fosr. These arguments may include
max.iter, method, gam.method, and sca