Learn R Programming

refund (version 0.1-5)

refund-package: Regression with Functional Data

Description

Functions for regression with functional data. The methods currently implemented regress (i) scalar responses on functional predictors (pfr [Goldsmith et al., 2011], its longitudinal extension lpfr [Goldsmith et al., 2010], and fpcr [Reiss and Ogden, 2007]); (ii) functional responses on scalar predictors (fosr [Reiss et al., 2010]); and (iii) functional responses on functional predictors (pffr [Ivanescu et al., 2011]).

Arguments

Details

For a complete list of functions type library(help=refund).

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional regression. Journal of Computational and Graphical Statistics, to appear.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical Society: Series C, to appear.

Ivanescu, A. E., Staicu, A.-M., Greven, S., Scheipl, F., and Crainiceanu, C. M. (2011). Penalized function-on-function regression. Submitted.

Reiss, P. T., Huang, L., and Mennes, M. (2010). Fast function-on-scalar regression with penalized basis expansions. International Journal of Biostatistics, 6(1), article 28. Available at http://works.bepress.com/phil_reiss/16/

Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional partial least squares. Journal of the American Statistical Association, 102, 984--996.