Maximization step.
postprocess(
estimates,
item.data,
pred.data,
prox.data,
item_data,
pred_data,
prox_data,
mean_predictors,
var_predictors,
item_type,
tau_vec,
num_tau,
alpha,
pen,
anchor,
control,
final_control,
final,
samp_size,
num_responses,
num_predictors,
num_items,
num_quad,
NA_cases
)a "list" object of processed "regDIF" results
List of converged parameters.
User-given matrix or data.frame of DIF and/or impact predictors.
User-given matrix or data.frame of item responses.
User-given matrix or data.frame of observed proxy scores.
Processed matrix or data.frame of item responses.
Processed matrix or data.frame of DIF and/or impact predictors.
Processed matrix or data.frame of observed proxy scores.
Possibly different matrix of predictors for the mean impact equation.
Possibly different matrix of predictors for the variance impact equation.
Optional character value or vector indicating the type of item to be modeled.
Optional numeric vector of tau values.
Logical indicating whether the minimum tau value needs to be identified during the regDIF procedure.
Numeric value indicating the alpha parameter in the elastic net penalty function.
Tuning parameter index.
Anchor item(s).
Optional list of user-defined control parameters
List of final control parameters.
List of model results.
Sample size in dataset.
Number of responses for each item.
Number of predictors.
Number of items in dataset.
Number of quadrature points used for approximating the latent variable.
Logical vector indicating NA cases.