Learn R Programming

regclass (version 1.5)

summarize_tree: Useful summaries of partition models from rpart

Description

Reports the RMSE, AIC, and variable importances for a partition model or the variable importances from a random forest.

Usage

summarize_tree(TREE)

Arguments

TREE
A partition model created with rpart or a random forest from randomForest

Details

Extracts the RMSE and AIC of a partition model and the variable importances of partition models or random forests.

References

Introduction to Regression and Modeling

See Also

rpart, randomForest

Examples

Run this code
  data(WINE)
	TREE <- rpart(Quality~.,data=WINE,control=rpart.control(cp=0.01,xval=10,minbucket=5))
	summarize_tree(TREE)
	RF <- randomForest(Quality~.,data=WINE)
	summarize_tree(RF)
	
	data(NFL)
	TREE <- rpart(X4.Wins~.,data=NFL,control=rpart.control(cp=0.002,xval=10,minbucket=5))
	summarize_tree(TREE)
	RF <- randomForest(X4.Wins~.,data=NFL,ntrees=500)
	summarize_tree(RF)
	 

Run the code above in your browser using DataLab