# linear model
mtcars$am <- factor(mtcars$am) # make 'am' categorical
model <- lm(mpg ~ wt * am, data=mtcars)
summary(model) # significant interaction
simple_slopes(model)
simple_slopes(model,
levels=list(wt=c(2, 3, 4, 'sstest'), am=c(0, 1, 'sstest'))) # test at specific levels
# generalized linear model
model <- glm(vs ~ gear * wt, data=mtcars, family='binomial')
summary(model) # marginal interaction
simple_slopes(model)
simple_slopes(model,
levels=list(gear=c(2, 3, 4, 'sstest'), wt=c(2, 3, 'sstest'))) # test at specific levels
# hierarchical linear model (nlme)
if (require(nlme, quietly=TRUE)) {
model <- lme(Sepal.Width ~ Sepal.Length * Petal.Length, random=~1|Species, data=iris)
summary(model) # significant interaction
simple_slopes(model)
simple_slopes(model,
levels=list(Sepal.Length=c(4, 5, 6, 'sstest'),
Petal.Length=c(2, 3, 'sstest'))) # test at specific levels
}
# hierarchical linear model (lme4)
if (require(lme4, quietly=TRUE)) {
model <- lmer(Sepal.Width ~ Sepal.Length * Petal.Length + (1|Species), data=iris)
summary(model)
simple_slopes(model)
simple_slopes(model,
levels=list(Sepal.Length=c(4, 5, 6, 'sstest'),
Petal.Length=c(2, 3, 'sstest'))) # test at specific levels
}
Run the code above in your browser using DataLab