powered by
generates the code to create the boosting model.
boosting_model(data = "datos.aprendizaje", variable.pred = NULL, model.var = "modelo.boosting", n.trees = 50, distribution = "gaussian", shrinkage = 0.1)
the name of the learning data.
the name of the variable to be predicted.
the name of the variable that stores the resulting model.
the n.trees parameter of the model.
the distribution parameter of the model.
the shrinkage parameter of the model.
gbm
# NOT RUN { library(gbm) library(dplyr) x <- boosting_model('iris', 'Petal.Length') exe(x) print(modelo.boosting) # }
Run the code above in your browser using DataLab