regrrr v0.1.1
0
Monthly downloads
Toolkit for Compiling, (Post-Hoc) Testing, and Plotting Regression Results
Compiling regression results into a publishable format, conducting post-hoc hypothesis testing, and plotting moderating effects (the effect of X on Y becomes stronger/weaker as Z increases).
Readme
regrrr (Toolkit for Compiling and Plotting Regression Results)
Description
Compiling regression results into a publishable format, conducting post-hoc hypothesis testing, and plotting moderating effects (the effect of X on Y becomes stronger/weaker as Z increases).
Installation
To install from CRAN:
install.packages("regrrr")
library(regrrr)
You can also use devtools to install the latest development version:
devtools::install_github("raykyang/regrrr")
library(regrrr)
Examples
# build regression models using mtcars dataset
data(mtcars)
m0 <- lm(mpg ~ vs + carb + hp + wt, data = mtcars)
m1 <- update(m0, . ~ . + wt * hp)
m2 <- update(m1, . ~ . + wt * vs)
# compile the correlation table
cor.table(data = m2$model)
# compile the regression table
regression_table <- rbind(
combine_long_tab(to_long_tab(summary(m0)$coef),
to_long_tab(summary(m1)$coef),
to_long_tab(summary(m2)$coef)),
compare_models(m0, m1, m2))
rownames(regression_table) <- NULL
print(regression_table)
# plot the moderating effect
plot_effect(reg.coef = summary(m2)$coefficients, data = mtcars, model = m2,
x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
confidence_interval = TRUE, CI_Ribbon = FALSE,
xlab = "Weight", ylab = "MPG", moderator.lab = "Horsepower") +
ggplot2::theme(text=ggplot2::element_text(family="Times New Roman", size = 16))
Functions in regrrr
| Name | Description | |
| compare_models | Compare regression models, which is compatible with the reg.table output # updated 9/13/2018 # | |
| combine_long_tab | Combine regression results from different models by columns | |
| add.n.r | Add row numbers to regression result data.frame | |
| regrrr | regrrr: a toolkit for compiling regression results | |
| plot_effect | plotting the marginal effect of X on Y, with or without one or multiple interaction terms | |
| add.pr | Add approximate p-value based on t score or z score, when sample size is large | |
| check_na_in | quickly check the proportion of NAs in each columns of a dataframe | |
| check_vif | quickly check the vifs in a regression model; for checking multi-collinearity | |
| scale_01 | Scale a vector into the 0-1 scale | |
| test_tilted_slopes | significance of regression slope (the marginal effect) under moderation testing restriction: the sig. of beta_x under the moderation of z1, with or without additional interaction terms (z2, z3, etc.) | |
| to_long_tab | Convert the regression result to the long format: the standard errors are in parentheses and beneath the betas | |
| test_coef_equality | testing equality of two coefficients (difference between coefficients of regressors), a Wald test note: if v is not alternatively specified, use car::linearHypothesis(lm_model, "X1 = X2") | |
| add.sig | Add significance level marks to the regression result | |
| cor.table | make the correlation matrix from the data.frame used in regression | |
| load.pkgs | load multiple packages | |
| check_cor | quickly check correlation matrix, or the correlation between a particular X and all other vars could be useful for looking for relevant instrument | |
| No Results! | ||
Last month downloads
Details
| Type | Package |
| License | GPL-3 |
| Encoding | UTF-8 |
| LazyData | true |
| RoxygenNote | 7.0.2 |
| BugReports | https://github.com/RayKYang/regrrr/issues |
| NeedsCompilation | no |
| Packaged | 2020-02-02 21:14:05 UTC; ray_mac |
| Repository | CRAN |
| Date/Publication | 2020-02-02 21:30:02 UTC |
| imports | dplyr , ggplot2 , lspline , magrittr , MuMIn , purrr , robustbase , scales , stats , stringr , tidyr , usdm |
| depends | R (>= 3.5.0) |
| suggests | testthat |
| Contributors | Luyao Peng |
Include our badge in your README
[](http://www.rdocumentation.org/packages/regrrr)