data("SVM_Benchmarking_Classification")
## 21 data sets
names(SVM_Benchmarking_Classification)
## 17 methods
relation_domain(SVM_Benchmarking_Classification)
## select preferences
P <- sapply(SVM_Benchmarking_Classification, relation_is_preference)
## only the artifical data sets yield preferences
names(SVM_Benchmarking_Classification)[P]
## visualize them using Hasse diagrams
if (require("Rgraphviz"))
plot(SVM_Benchmarking_Classification[P])
## Same for regression:
data("SVM_Benchmarking_Regression")
## 12 data sets
names(SVM_Benchmarking_Regression)
## 10 methods
relation_domain(SVM_Benchmarking_Regression)
## select preferences
P <- sapply(SVM_Benchmarking_Regression, relation_is_preference)
## only two of the artifical data sets yield preferences
names(SVM_Benchmarking_Regression)[P]
## visualize them using Hasse diagrams
if (require("Rgraphviz"))
plot(SVM_Benchmarking_Regression[P])
## Consensus solutions:
data("SVM_Benchmarking_Classification_Consensus")
data("SVM_Benchmarking_Regression_Consensus")
## The solutions for the three families are not unique
print(SVM_Benchmarking_Classification_Consensus)
print(SVM_Benchmarking_Regression_Consensus)
## visualize the consensus preferences
if (require("Rgraphviz")) {
plot(SVM_Benchmarking_Classification_Consensus$P)
plot(SVM_Benchmarking_Regression_Consensus$P)
}
## in tabular style:
ranking <- function(x) rev(names(sort(relation_class_ids(x))))
sapply(SVM_Benchmarking_Classification_Consensus$P, ranking)
sapply(SVM_Benchmarking_Regression_Consensus$P, ranking)
## (prettier and more informative:)
relation_classes(SVM_Benchmarking_Classification_Consensus$P[[1]])
Run the code above in your browser using DataLab