data("SVM_Benchmarking_Classification")
## 21 data sets
names(SVM_Benchmarking_Classification)
## 17 methods
relation_domain(SVM_Benchmarking_Classification)
## select preferences
preferences <-
Filter(relation_is_preference, SVM_Benchmarking_Classification)
## only the artifical data sets yield preferences
names(preferences)
## visualize them using Hasse diagrams
if(require("Rgraphviz")) plot(preferences)
## Same for regression:
data("SVM_Benchmarking_Regression")
## 12 data sets
names(SVM_Benchmarking_Regression)
## 10 methods
relation_domain(SVM_Benchmarking_Regression)
## select preferences
preferences <-
Filter(relation_is_preference, SVM_Benchmarking_Regression)
## only two of the artifical data sets yield preferences
names(preferences)
## visualize them using Hasse diagrams
if(require("Rgraphviz")) plot(preferences)
## Consensus solutions:
data("SVM_Benchmarking_Classification_Consensus")
data("SVM_Benchmarking_Regression_Consensus")
## The solutions for the three families are not unique
print(SVM_Benchmarking_Classification_Consensus)
print(SVM_Benchmarking_Regression_Consensus)
## visualize the consensus preferences
classP <- SVM_Benchmarking_Classification_Consensus$P
regrP <- SVM_Benchmarking_Regression_Consensus$P
if(require("Rgraphviz")) {
plot(classP)
plot(regrP)
}
## in tabular style:
ranking <- function(x) rev(names(sort(relation_class_ids(x))))
sapply(classP, ranking)
sapply(regrP, ranking)
## (prettier and more informative:)
relation_classes(classP[[1L]])
Run the code above in your browser using DataLab