relation_is_Euclidean(x, na.rm = FALSE)
relation_is_Ferrers(x, na.rm = FALSE)
relation_is_acyclic(x)
relation_is_antisymmetric(x, na.rm = FALSE)
relation_is_asymmetric(x, na.rm = FALSE)
relation_is_bijective(x)
relation_is_binary(x)
relation_is_complete(x, na.rm = FALSE)
relation_is_coreflexive(x, na.rm = FALSE)
relation_is_crisp(x, na.rm = FALSE)
relation_is_cyclic(x)
relation_is_endorelation(x)
relation_is_equivalence(x, na.rm = FALSE)
relation_is_functional(x)
relation_is_homogeneous(x)
relation_is_injective(x)
relation_is_interval_order(x, na.rm = FALSE)
relation_is_irreflexive(x, na.rm = FALSE)
relation_is_left_total(x)
relation_is_linear_order(x, na.rm = FALSE)
relation_is_match(x, na.rm = FALSE)
relation_is_negatively_transitive(x, na.rm = FALSE)
relation_is_partial_order(x, na.rm = FALSE)
relation_is_preference(x, na.rm = FALSE)
relation_is_preorder(x, na.rm = FALSE)
relation_is_quasiorder(x, na.rm = FALSE)
relation_is_quasitransitive(x, na.rm = FALSE)
relation_is_reflexive(x, na.rm = FALSE)
relation_is_right_total(x)
relation_is_semiorder(x, na.rm = FALSE)
relation_is_semitransitive(x, na.rm = FALSE)
relation_is_strict_linear_order(x, na.rm = FALSE)
relation_is_strict_partial_order(x, na.rm = FALSE)
relation_is_strongly_complete(x, na.rm = FALSE)
relation_is_surjective(x)
relation_is_symmetric(x, na.rm = FALSE)
relation_is_tournament(x, na.rm = FALSE)
relation_is_transitive(x, na.rm = FALSE)
relation_is_trichotomous(x, na.rm = FALSE)
relation_is_weak_order(x, na.rm = FALSE)
relation_has_missings(x)relation.A relation $R$ on a set $X$ is called homogeneous iff $D(R) = (X, \dots, X)$
An endorelation is a binary homogeneous relation.
For a crisp binary relation, let us write $x R y$ iff $(x, y)$ is contained in $R$.
A crisp binary relation $R$ is called [object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
A crisp endorelation $R$ is called [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Some combinations of these basic properties have special names because of their widespread use: [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
If $R$ is a weak order (
There seem to be no commonly agreed definitions for order relations: e.g., Fishburn (1972) requires these to be irreflexive.
For a fuzzy binary relation $R$, let $R(x, y)$ denote the
membership of $(x, y)$ in the relation. Write $T$ and $S$
for the fuzzy t-norm (intersection) and t-conorm (disjunction),
respectively (min and max for the
A relation has missings iff at least one cell in the incidence matrix
is NA.
H. R. Varian (2002), Intermediate Microeconomics: A Modern Approach. 6th Edition. W. W. Norton & Company.