alpha
and scale parameter lambda
.dlogis.exp(x, alpha, lambda, log = FALSE)
plogis.exp(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qlogis.exp(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.exp(n, alpha, lambda)
length(n) > 1
, the length
is taken to be the number required.dlogis.exp
gives the density,
plogis.exp
gives the distribution function,
qlogis.exp
gives the quantile function, and
rlogis.exp
generates random deviates.
where $\alpha$ and $\lambda$ are the shape
and scale
parameters, respectively.
.Random.seed
about random number; slogis.exp
for ExpExt survival / hazard etc. functions
## Load data sets
data(bearings)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(bearings)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 2.36754, lambda.est = 0.01059
dlogis.exp(bearings, 2.36754, 0.01059, log = FALSE)
plogis.exp(bearings, 2.36754, 0.01059, lower.tail = TRUE, log.p = FALSE)
qlogis.exp(0.25, 2.36754, 0.01059, lower.tail=TRUE, log.p = FALSE)
rlogis.exp(30, 2.36754, 0.01059)
Run the code above in your browser using DataLab